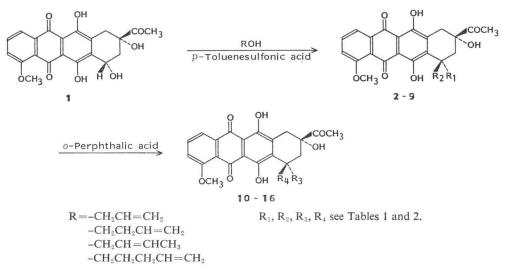
SYNTHESIS AND BIOLOGICAL ACTIVITY OF (7*S*)-*O*-EPOXYALKYL DERIVATIVES OF DAUNOMYCINONE

VĚRA PŘIKRYLOVÁ, HELENA LIPAVSKÁ, JOSEF V. JIZBA, JÁN FUSKA*, Miloslav Podojil and Zdenko Vaněk

Institute of Microbiology, Czechoslovak Academy of Sciences, 142 20 Prague 4-Krč, Czechoslovakia *Department of Biochemical Technology, Faculty of Chemical Technology, Slovak Technical University, 812 37 Bratislava, Czechoslovakia

(Received for publication June 11, 1985)

Synthesis and antibacterial activity of a number of 7-*O*-epoxyalkyl derivatives of daunomycinone prepared from 7-*O*-alkenyl derivatives of daunomycinone are described along with their inhibitory effect on leukemia P 388 cells.


In an effort to increase the biological activity of anthracycline antitumor agents, derivatives have been prepared by modifying both the aglycone and the sugar moiety^{1,2)}. A number of 7-*O*-derivatives of daunomycinone were prepared in this laboratory, including 7-*O*-alkyl, 7-*O*-alkenyl and 7-*O*-alkynyl derivatives^{3,4)}, 7-*O*-hydroxyalkyl derivatives⁵⁾ and their glycosides⁶⁾. Some of them exhibited antibacterial activity.

This study describes the preparation of 7-*O*-epoxyalkyl derivatives of daunomycinone from 7-*O*-alkenyl derivatives of daunomycinone and evaluation of their biological activity.

Chemistry

Synthesis of 7-*O*-epoxyalkyl derivatives of daunomycinone is shown in Chart 1. After daunorubicin hydrolysis, daunomycinone (1) is isolated and converted to 7-*O*-alkenyl derivatives by reactions

Compound	R_1	R ₂ H	
2	$-OCH_2CH=CH_2$		
3	Н	$-OCH_2CH=CH_2$	
4	$-OCH_2CH_2CH=CH_2$	н	
5	Н	$-OCH_2CH_2CH=CH_2$	
6	$-OCH_2CH = CHCH_3$	Н	
7	Н	$-OCH_2CH = CHCH_3$	
8	$-OCH_2CH_2CH_2CH_2CH_2$	Н	
9	Н	$-OCH_2CH_2CH_2CH_2CH_2$	

Table 1. 7-O-Alkenyl derivatives of daunomycinone.

T-1-1- 0

Compound	R ₃	R ₄	
	0		
10	$-OCH_2CH$ CH_2	Н	
11	$-OCH_2CH_2CH^2$ CH ₂	Н	
12	Н	-OCH ₂ CH ₂ CH CH ₂	
	~°\		
13	$-OCH_2CH$ CHCH ₃	Н	
14	Н	-OCH2CH CHCH3	
14	,0 ,		
15	$-OCH_2CH_2CH_2CH$ CH_2	Н	
	-		
16	Н	-OCH ₂ CH ₂ CH ₂ CH ² CH ₂	

with appropriate unsaturated alcohols in absolute benzene and xylene in the presence of *p*-toluenesulfonic acid. The reactions give rise to 7-O-alkenyl derivatives of both the S and the R series⁴⁾ which are listed in Table 1. 7-O-Alkenyl derivatives of daunomycinone $2 \sim 9$ are transformed to their corresponding epoxides by *o*-perphthalic acid in absolute chloroform. The resulting 7-O-epoxyalkyl derivatives of daunomycinone $10 \sim 16$ are given in Table 2.

Antimicrobial Activity

Compounds $10 \sim 16$ were tested against *Bacillus subtilis, Saccharomyces cerevisiae* K and *Escherichia coli* C 600 (Institute of Microbiology). *Brevibacterium flavum* (ATCC 14067) by the plate diffusion method and compared with daunorubicin. None of them including daunorubicin was active against *E. coli*. Against other test microorganisms the (7R)-O-epoxyalkyl derivatives of dauno-mycinone (12, 14 and 16) were also inactive.

The activity of (7S)-O-epoxyalkyl derivatives against *B. subtilis* decreases with increasing length of the side chain at position 7, the highest activity being exhibited by compound **10**. Inhibition of growth of *B. subtilis* at a concentration of 0.001 mg/ml by compound **10** was equivalent to the inhibition caused by 0.7 mg/ml daunorubicin. Compound **10** is also the only one to inhibit *S. cerevisiae*.

Inhibition zones of (7S)-O-epoxyalkyl derivatives of daunomycinone are given in Table 3 for compounds 11, 13, 15 and daunorubicin as a control, and in Table 4 for compound 10 and daunorubicin.

Inhibition of Nucleic Acid and Protein Synthesis of P 388 Cells

In an *in vitro* experiment some 7-O-epoxyalkyl derivatives of daunomycinone inhibited the nucleic acid and protein synthesis of P 388 cells. The inhibitory effect was estimated as the decrease in incorporation of suitable precursors into the P 388 cells relative to control. Table 5 shows the inhibition of incorporation of adenine, L-valine, thymidine and uridine into the P 388 cells by compounds 10, 11, $13 \sim 15$, daunorubicin and daunomycinone.

Experimental

Melting points were measured on the Kofler stage, optical rotation on an automatic polarimeter

Table 3. Comparative *in vitro* activity of compounds 11, 13, 15^a.

C lh	Organism ^c		
Compound ^b -	B. subtilis	Brevibacterium	
11	17	18	
13	12	23	
15	11	22	
Daunorubicin	19	28	

^a Inhibition zones in mm. ^b Preparation of samples; 1 mg compound dissolved in 1 ml methanol, 0.1 ml sample placed on plate. ^c Preparation of inoculum; the particular test-organism was cultivated under standard static conditions in a 2-liter Roux-bottle for 20 days. The surface of culture was splashed by 50 ml of sterile water and 400 ml of 3% agar medium was inoculated by 0.1 ml of this suspension.

Bendix Ericsson, and mass spectra on a Varian MAT-311 spectrometer. ¹H NMR spectra were measured on a Jeol FX-60 spectrometer (FD mode, 59.797 MHz) at 25°C in deuteriochloroform, with tetramethylsilane as internal standard. Chemical shifts were calculated from digitized address differences (± 0.002 ppm) and are given in the δ scale.

Inhibition of Nucleic Acid and Protein Synthesis

Leukemia P 388 cells obtained from the abdominal cavity 7 days after implantation were freed of the serum, resuspended in a buffer (concentration $3 \times 10^{\text{d}}/\text{ml}$) and dispensed to test tubes in 1 ml aliquots. After preincubation (1 hour at 37° C) they were supplied with the tested compounds (100 µg/ml in 10 µg DMSO) together

Table 4. Comparative in vitro activity of compound 10^a.

Compound ^b		Organism	
	B. subtilis	Brevibacterium	S. cerevisiae
10	26	31	17
Daunorubicin	15	24	0

^a Inhibition zones in mm. ^b Sample preparation; 0.1 mg compound dissolved in 1 ml methanol for testing *B. subtilis* and *Brevibacterium*, 1 mg/ml for testing *S. cerevisiae*, 0.1 ml solution applied per plate.

Compound	[U-14C]Adenine	L-[U-14C]Valine	[U-14C]Thymidine	[U-14C]Uridine
10	65.3	80.3	83.3	95.4
11	45.7	29.0	45.5	73.2
13	54.9	26.0	57.8	85.3
14	34.9	1.3	48.0	64.9
15	46.2	41.9	56.7	76.6
Daunorubicin	65.9	49.1	83.1	92.9
Daunomycinone	31.4	+9.8	24.2	38.8

Table 5. Inhibition of incorporation of precursors into P 388 cells (%).

with radioactive substrates; $[U^{-14}C]$ adenine (0.76 μ g, 13 kBq/ μ g), L- $[U^{-14}C]$ valine (1.12 μ g, 5.9 kBq/ μ g), $[U^{-14}C]$ uridine (0.26 μ g, 22.5 kBq/ μ g) and $[U^{-14}C]$ thymidine (1.12 μ g, 7.14 kBq/ μ g). Control test tubes contained the cell suspension, labelled precursor and 10 μ liter DMSO. The suspension was incubated for 1 hour at 37°C and incorporation of precursors was terminated by adding 1 ml 5% trichloro-acetic acid. Inhibitory effect of 7-*O*-epoxyalkyl derivatives of daunomycinone was determined from differences in the utilization of the precursors⁷.

Preparation of 7-O-Alkenyl Derivatives of Daunomycinone $(2 \sim 9)$

Daunomycinone (150 mg) was dissolved in the mixture of benzene (6 ml) and xylene (6 ml). Then it was added 2 ml of corresponding unsaturated alcohol (2-propen-1-ol, 3-buten-1-ol, *trans*-2-buten-1-ol respectively 4-penten-1-ol) and *p*-toluenesulfonic acid (50 mg). The reaction was carried out $5 \sim 20$ hours at $115 \sim 120^{\circ}$ C. The reaction mixture was diluted with water and the products were extracted with chloroform. Solvent was removed and the residue subjected to column chromatography on silica gel (Lachema, Czechoslovakia); the eluent was benzene. Resulting mixture of corresponding (7S) and (7R) derivatives was separated by preparative thin-layer chromatography on Silufol 20 in the system benzene - CHCl₃ - EtOAc - MeOH, 7: 7: 3: 1.

Yield of reactions was $86 \sim 91\%$ and the ratio of (7S) and (7R) derivatives (calculation based on isolated products) was for reaction with 2-propen-1-ol 6:5, for 3-buten-1-ol 3:5, for *trans*-2-buten-1-ol 2:8 and for 4-penten-1-ol 4:4.

Absolute configuration on C(7) for compounds $2 \sim 9$ was estimated from ¹H NMR spectrum⁴).

Preparation of 7-O-Epoxyalkyl Derivatives of Daunomycinone $(10 \sim 16)$

All 7-O-epoxyalkyl derivatives $(10 \sim 16)$ were prepared as follows: A sample of 100 mg 7-Oalkenyl derivative of daunomycinone $(2 \sim 9)$ was dissolved in 100 ml absolute chloroform and a solution of o-perphthalic acid in diethyl ether (41 mg o-perphthalic acid in 1 ml) was added. The reaction mixture was left to stand at $20 \sim 25^{\circ}$ C for 60 hours. The precipitated o-phthalic acid was filtered off and the reaction mixture was extracted with water. The chloroform solution was evaporated to dryness and the residue was separated by preparative thin-layer chromatography on silica gel (Silufol 20) in the system CHCl₃ - benzene - EtOAc - MeOH, 7:7:3:1. Reaction yields are included in the characteristics of the individual substances $10 \sim 16$. The (7R)-O-(2,3-epoxypropyl) derivative of daunomycinone, which was formed in small amounts, was the only compound that was not isolated.

 $(7S) - 9 - \text{Acetyl} - 4 - \text{methoxy} - 7 - O - (2,3 - \text{epoxypropyl}) - 7,8,9,10 - \text{tetrahydro} - 6,9,11 - \text{trihydroxy} - 5,12 - naphthacenequinone (10): Yield 34%; mp 66~68°C; [<math>\alpha$]³⁰_D +115° (c 0.11, CHCl₃); MS 454 (M⁺); ¹H NMR 1.81 (1H, dd, J=3.7, 14.7 Hz), 2.43 (3H, s), 2.63 (1H, dd, J=3.4, 14.7 Hz), 2.74 (2H, mt), 2.83, 3.40 (2H, AB system, $J_{AB}=19.4$ Hz), 3.71~3.98 (3H, mt), 4.08 (3H, s), 4.90 (1H, s, OH), 5.14 (1H, mt, W=7 Hz), 7.39 (1H, dd, J=2.4, 7.3 Hz), 7.78 (1H, t, J=7.3 Hz), 8.06 (1H, dd, J=2.4, 7.3 Hz), 13.29 (1H, s), 13.99 (1H, s).

Anal Calcd for $C_{24}H_{22}O_9$: C 63.43, H 4.88. Found: C 63.49, H 4.91.

(7S)-9-Acetyl-4-methoxy-7-O-(3,4-epoxybutyl)-7,8,9,10-tetrahydro-6,9,11-trihydroxy-5,12-naphthacenequinone (11): Yield 35%; mp 70~72°C; $[\alpha]_{10}^{20}$ +202° (*c* 0.09, CHCl₃); MS 468 (M⁺); ¹H NMR 1.99 (1H, dd, J=3.6, 14.7 Hz), 2.42 (1H, dd, J=3.1, 14.7 Hz), 2.43 (3H, s), 2.95, 3.26 (2H, AB system, J_{AB} =19.5 Hz), 3.63~4.01 (3H, mt), 4.09 (3H, s), 5.10 (1H, mt, W=6.7 Hz), 7.38 (1H, dd, J=1.8, 7.3 Hz), 7.77 (1H, t, J=7.3 Hz), 8.05 (1H, dd, J=1.8, 7.3 Hz), 13.29 (1H, s), 13.96 (1H, s).

Anal Calcd for C₂₅H₂₄O₉: C 64.09, H 5.18.

Found: C 64.15, H 5.21.

(7R)-9-Acetyl-4-methoxy-7-O-(3,4-epoxybutyl)-7,8,9,10-tetrahydro-6,9,11-trihydroxy-5,12-naphthacenequinone (12): Yield 26%; mp 101~104°C; $[\alpha]_{D}^{20}$ -74° (*c* 0.11, CHCl₃); MS 468 (M⁺); ¹H NMR 1.77 (2H, mt), 2.10 (1H, dd, *J*=4.9, 14.6 Hz), 2.38 (2H, s), 2.49 (2H, mt), 2.62 (1H, dd, *J*= 4.9, 14.6 Hz), 3.01 (1H, mt), 2.99, 3.29 (2H, AB system, J_{AB} =17.1 Hz), 3.76 (2H, t, *J*=6.1 Hz), 3.94 (1H, s), 4.09 (3H, s), 5.11 (1H, t, *J*=4.9 Hz), 7.37 (1H, dd, *J*=1.8, 7.9 Hz), 7.77 (1H, t, *J*=7.9 Hz), 8.05 (1H, dd, *J*=1.8, 7.9 Hz), 13.31 (1H, s), 13.87 (1H, s).

Anal Calcd for $C_{25}H_{24}O_{\theta}$:C 64.09, H 5.18.Found:C 64.11, H 5.12.

(7*S*)-9-Acetyl-4-methoxy-7-*O*-(2,3-epoxybutyl)-7,8,9,10-tetrahydro-6,9,11-trihydroxy-5,12-naphthacenequinone (**13**): Yield 45%; mp 76~77°C; $[\alpha]_{\rm D}^{20}$ +173° (*c* 0.15, CHCl₃); MS 468 (M⁺); ¹H NMR 1.31 (3H, d, *J*=6.8 Hz), 1.98 (1H, dd, *J*=4.0, 14.2 Hz), 2.41 (1H, dd, *J*=2.0, 14.2 Hz), 2.43 (3H, s), 2.97 (2H, mt), 2.90, 3.20 (2H, AB system, *J*_{AB}=19.0 Hz), 3.96 (2H, d, *J*=3.5 Hz), 4.08 (3H, s), 5.09 (1H, mt, W=8.8 Hz), 7.36 (1H, dd, *J*=1.5, 7.3 Hz), 7.75 (1H, t, *J*=7.3 Hz), 8.02 (1H, dd, *J*= 1.5, 7.3 Hz), 13.24 (1H, s), 13.93 (1H, s).

Anal Calcd for $C_{25}H_{24}O_9$: C 64.09, H 5.18.

Found: C 64.12, H 5.15.

(7R)-9-Acetyl-4-methoxy-7-O-(2,3-epoxybutyl)-7,8,9,10-tetrahydro-6,9,11-trihydroxy-5,12-naphthacenequinone (14): Yield 43%; mp 110~113°C; $[\alpha]_{D}^{20}$ -86° (c 0.13, CHCl₃); MS 468 (M⁺); ¹H NMR 1.30 (3H, d, J=6.1 Hz), 2.11 (1H, dd, J=4.9, 14.8 Hz), 2.39 (3H, s), 2.54 (1H, dd, J=0.2, 14.8 Hz), 2.89 (2H, mt), 2.96, 3.29 (2H, AB system, J_{AB} =18.9 Hz), 3.70 (2H, mt), 4.07 (3H, s), 5.11 (1H, dd, J=4.9, 9.2 Hz), 7.39 (1H, dd, J=1.8, 7.9 Hz), 7.75 (1H, t, J=7.9 Hz), 8.02 (1H, dd, J=1.8, 7.9 Hz), 13.27 (1H, s), 13.87 (1H, s).

Anal Calcd for $C_{25}H_{24}O_{9}$: C 64.09, H 5.18. Found: C 64.05, H 5.22.

(7*S*)-9-Acetyl-4-methoxy-7-*O*-(4,5-epoxypentyl)-7,8,9,10-tetrahydro-6,9,11-trihydroxy-5,12-naphthacenequinone (**15**): Yield 21%; mp 65~66°C; $[\alpha]_{D}^{20}$ +187° (*c* 0.13, CHCl₃); MS 482 (M⁺); ¹H NMR 2.43 (3H, s), 1.88 (1H, dd, *J*=3.9, 14.7 Hz), 2.93, 3.23 (2H, AB system, *J*_{AB}=19.3 Hz), 3.93 (3H, mt), 4.10 (3H, s), 5.02 (1H, mt, W=6.3 Hz), 5.15 (1H s), 7.36 (1H, dd, *J*=1.5, 8.3 Hz), 7.76 (1H, t, *J*=8.3 Hz), 7.76 (1H, dd, *J*=1.5, 8.3 Hz), 13.30 (1H, s), 13.94 (1H, s).

Anal Calcd for C₂₆H₂₆O₉: C 64.72, H 5.43.

Found: C 64.80, H 5.48.

(7R)-9-Acetyl-4-methoxy-7-O-(4,5-epoxypentyl)-7,8,9,10-tetrahydro-6,9,11-trihydroxy-5,12-naphthacenequinone (16): Yield 20%; mp 145~147°C; $[\alpha]_{D}^{20}$ -81° (c 0.12, CHCl₃); MS M⁺ was not observed; ¹H NMR 2.41 (3H, s), 3.60~3.90 (mt, OCH protons), 4.10 (3H, s), 4.37 (1H, mt), 5.39 (1H, t, J=8.3 Hz), 7.23~8.13 (3H, mt), 13.27 (1H, s), 14.35 (1H, s).

Anal Calcd for $C_{26}H_{26}O_9$: C 64.72, H 5.43. Found: C 64.65, H 5.40.

Acknowledgment

We thank Dr. J. VOKOUN for measuring the mass spectra and Dr. P. SEDMERA for measuring the ¹H NMR spectra.

References

- 1) ARCAMONE, F.: Antitumor anthracyclines: Recent developments. Med. Res. Rev. 4: 153~188, 1984
- WILEY, P. F.; D. W. ELROD, D. J. HOUSER, J. L. JOHNSON, L. M. PSCHIGODA, W. C. KRUEGER & A. MOSCOWITZ: Nogalamycin. Stereochemistry and chemical modification. J. Org. Chem. 44: 4030~ 4038, 1979
- PŘIKRYLOVÁ, V.; P. SEDMERA, J. V. JIZBA, J. VOKOUN, H. LIPAVSKÁ, M. PODOJIL & Z. VANĚK: 7-O-Alkyl derivatives of daunomycinone. Collect. Czech. Chem. Commun. 49: 313~319, 1984
- 4) PŘIKRYLOVÁ, V.; P. SEDMERA, J. V. JIZBA, J. VOKOUN, H. LIPAVSKÁ, M. PODOJIL & Z. VANĚK: 7-O-Alkenyl and alkynyl derivatives of daunomycinone. Collect. Czech. Chem. Commun. 50: 2625~2633, 1985
- JIZBA, J. V.; P. SEDMERA, J. VOKOUN, H. LIPAVSKÁ, M. PODOJIL & Z. VANĚK: Reaction of daunomycinone with diols. Collect. Czech. Chem. Commun. 49: 653~665, 1984
- 6) JIZBA, J. V.; P. SEDMERA, V. PŘIKRYLOVÁ, H. LIPAVSKÁ, J. VOKOUN & Z. VANĚK: Glycosides of (7S)-9acetyl-4-methoxy-7-O-(2-hydroxyethyl)-7,8,9,10-tetrahydro-6,9,11-trihydroxy-5,12-naphthacenequinones and the way of their preparation. Czechoslovak Patent Application PV 8261-83
- FUSKA, J.; M. MIKO, P. NEMEC & L. DROBNICA: Screening of the cytotoxic action of fungus filtrates on Ehrlich's ascites carcinoma, utilizing ¹⁴C-labelled precursors. Neoplasma 18: 631 ~ 636, 1971